ChatOpenAI
This notebook provides a quick overview for getting started with OpenAI chat models. For detailed documentation of all ChatOpenAI features and configurations head to the API reference.
OpenAI has several chat models. You can find information about their latest models and their costs, context windows, and supported input types in the OpenAI docs.
Note that certain OpenAI models can also be accessed via the Microsoft Azure platform. To use the Azure OpenAI service use the AzureChatOpenAI integration.
Overview
Integration details
Class | Package | Local | Serializable | JS support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatOpenAI | langchain-openai | ❌ | beta | ✅ |
Model features
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Native async | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|---|
✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ |
Setup
To access OpenAI models you'll need to create an OpenAI account, get an API key, and install the langchain-openai
integration package.
Credentials
Head to https://platform.openai.com to sign up to OpenAI and generate an API key. Once you've done this set the OPENAI_API_KEY environment variable:
import getpass
import os
if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API key: ")
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
Installation
The LangChain OpenAI integration lives in the langchain-openai
package:
%pip install -qU langchain-openai
Instantiation
Now we can instantiate our model object and generate chat completions:
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
model="gpt-4o",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# api_key="...", # if you prefer to pass api key in directly instaed of using env vars
# base_url="...",
# organization="...",
# other params...
)
Invocation
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content="J'adore la programmation.", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 5, 'prompt_tokens': 31, 'total_tokens': 36}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3aa7262c27', 'finish_reason': 'stop', 'logprobs': None}, id='run-63219b22-03e3-4561-8cc4-78b7c7c3a3ca-0', usage_metadata={'input_tokens': 31, 'output_tokens': 5, 'total_tokens': 36})
print(ai_msg.content)
J'adore la programmation.